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Analytical Solution for Cauchy Reaction-Diffusion Problems 
by Homotopy Perturbation Method

(Penyelesaian Beranalisis Bagi Masalah Tindak Balas-resapan 
Cauchy dengan Kaedah Usikan Homotopi)

M.S.H. CHOWDHURY & I. HASHIM*

ABSTRACT

In this paper, the homotopy-perturbation method (HPM) is applied to obtain approximate analytical solutions for the 
Cauchy reaction-diffusion problems. HPM yields solutions in convergent series forms with easily computable terms. The 
HPM is tested for several examples. Comparisons of the results obtained by the HPM with that obtained by the Adomian 
decomposition method (ADM), homotopy analysis method (HAM) and the exact solutions show the efficiency of HPM.
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ABSTRAK

Dalam makalah ini, kaedah usikan homotopi (KUH) diaplikasikan bagi memperoleh penyelesaian hampiran beranalisis 
untuk masalah tindak balas-resapan. KUH menghasilkan penyelesaian dalam bentuk siri yang menumpu dengan sebutan 
mudah dihitung. KUH diuji terhadap beberapa contoh masalah. Perbandingan keputusan yang diperoleh menerusi 
KUH dengan kaedah penguraian Adomian (KPA), kaedah homotopi analisis (KHA) dan penyelesaian tepat menunjukkan 
keefisienan KUH.

Kata kunci: Kaedah homotopi usikan; masalah Cauchy; persamaan tindak balas-resapan

INTRODUCTION

Cauchy reaction-diffusion equations model many problems 
in mathematical physics, astrophysics, engineering and 
science. The one-dimensional, time-dependent reaction 
diffusion equation can be written as (Dehghan & Shakeri 
2008; Lesnic 2007), 

     (1)

 

where w  is the concentration, q  is the reaction parameter 
and A > 0 is the diffusion coefficient, subject to the initial 
or boundary conditions
 
  (2)
  
    (3)

The problem given by Equation (1) and (2) is called the 
characteristic Cauchy problem in the domain Ω = ℜ × ℜ

+
, 

and the problem given by Equation (1) and (3) is called 
the non-characteristic Cauchy problem in the domain Ω 
= ℜ

+
 × ℜ, . Very recently, Dehghan and Shakeri (2008) 

employed the variational iteration method (VIM) and Lesnic 
(2007) applied the Adomian decomposition (ADM) and 

Sami Bataineh et al. (2008) applied the homotopy analysis 
method (HAM) to solve the Cauchy reaction-diffusion 
problems.
 In recent years, much attention has been given to the 
study of the homotopy-perturbation method (HPM) (He 
1999, 2000, 2003, 2005a, 2005b, 2006a, 2006b, 2006c) 
for solving a wide range of problems whose mathematical 
models yield differential equation or system of differential 
equations. HPM deforms a difficult problem into an infinite 
set of problems which are easier to solve without any need 
to transform non linear terms. The HAM, different from 
perturbation methods, can be categorized into a generalized 
Taylor expansion method. The HPM applies the homotopy 
parameter p, as an expanding parameter. The applications 
of HPM in non linear problems have been demonstrated by 
many researchers. For examples, the HPM was employed 
to solve variational problems (Abdulaziz et al. 2008a), 
fractional initial value problems (Abdulaziz et al. 2008b), 
systems of fractional differential equations (Abdulaziz et 
al. 2008c), singular second-order differential equations 
(Chowdhury & Hashim 2007a), time-dependent Emden-
Fowler type equations (Chowdhury & Hashim 2007b), 
Klein-Gordon and sine-Gordon equations (Chowdhury 
& Hashim 2007c), n th-order IVPs directly (Chowdhury 
& Hashim 2007d), non linear population dynamics 
models (Chowdhury et al. 2007a), chaotic Lorenz system 
(Chowdhury et al. 2007b), squeezing flow of a Newtonian 
fluid (Ghori et al. 2007), non linear partial differential 
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equations of fractional order (Momani & Odibat 2007), 
quadratic Riccati differential equation of fractional order 
(Odibat & Momani 2008), an inverse problem of diffusion 
equation (Shakeri & Dehghan 2007) and Couette and 
Poiseuille flows for non-Newtonian fluids (Siddiqui et al. 
2006).
 In this paper, we shall obtain analytical solutions 
to (1)-(3) by the HPM. The HPM yields convergent series 
solutions with easily computable terms. Test examples 
demonstrate the efficiency of the HPM.

SOLUTION APPROACH BY HPM

Since the HPM has now become standard and for brevity, 
the reader is referred to (He 1999, 2000, 2003, 2005a, 
2005b, 2006a 2006b, 2006c) for the basic ideas of HPM. In 
this section, we shall demonstrate the application of HPM 
to solve Equation (1)-(3).

CHARACTERISTIC SOLUTION (PARTIAL  
t -SOLUTION) OF CAUCHY PROBLEM

According to HPM, we construct a homotopy into Equation 
(1) which satisfies the following relation: 

   (4)

where p ∈ [0,1] is an embedding parameter and y0 is an 
initial approximation which generally satisfies the initial 
conditions. Let us choose the initial approximations as 

   (5)

and  
  (6)

where uj (j = 1,2,3,...) are functions yet to be determined. 
Substituting (5)-(6) into (4) and collecting terms of the 
same powers of p, we have 

  (7)
 
  (8)
  
  (9)

etc. Now we can easily solve the above equations for u1, 
u2 and u3 etc. using the Maple package.

NON-CHARACTERISTIC SOLUTION (PARTIAL x- 
SOLUTION) OF CAUCHY PROBLEM

 Now we construct a homotopy into Equation (1) as 
follows: 

  
   

(10)

where p ∈ [0,1] is an embedding parameter and y0 is an initial 
approximation which satisfies the boundary conditions. Let 
us choose the initial approximations as 

   
    (11)

where uj (j = 1,2,3,...) are functions yet to be determined. 
Substituting (11) and (6) into (10) and collecting terms of 
the same powers of p, we have 
 

                                               
      (12)
 
  
    (13)
 
  
     (14)

etc. Finally, the series solution can be written as 

 w; u0 +u1 + u2 + u3 +.....  (15)

 The convergence of series (15) has been proven by 
He in his papers (1999, 2000).

APPLICATIONS OF HPM

The efficiency and accuracy of HPM to (1)-(3) through four 
examples demonstrated. The HPM algorithm is coded in the 
computer algebra package Maple.

Example 1. Case: q = constant 

Setting and, Equation (1) becomes the Kolmogorov-
Petrovsky-Piskunov (KPP) equation 

             (16)

subject to the initial and boundary conditions 

   (17)
 
  
      (18)

CHARACTERISTIC SOLUTION (PARTIAL t -SOLUTION)

According to the HPM, we construct a homotopy into Eq. 
(16) which satisfies the following relation: 

 wt – (y0)t + p[(y0)t – wxx + w] = 0, (19)

where p ∈ [0,1] is an embedding parameter. Let us choose 
the initial approximations as 

             (20)
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where uj (j = 1,2,3,...) are functions yet to be determined. 
Substituting (6) and (20) into (19) and collecting terms of 
the same powers of p, we have 

 (u1)t + (y0)t – (u0)xx + u0 = 0,     u1(x, 0) = 0,         (21) 
 
 (u2)t – (u1)xx + u1 = 0,   u2(x, 0) = 0,  (22) 
 
 (u3)t – (u2)xx + u2 = 0,    u3(x, 0) = 0,  (23)
 
 (u4)t – (u3)xx + u3 = 0,     u4(x, 0) = 0,  (24)

etc. Solving the differential equations (21)-(24) we 
obtain, 

    
   
etc.
 Hence, the characteristic (partial t -solution) series 
solution is 
 
  (25)

and this will, in the limit of infinitely many terms, yield 
the closed-form solution, 

 w(x, t) = e–x + xe–t,  (26)

which is the same as the solutions obtained by ADM (Lesnic 
2007) and HAM for  (Sami Bataineh et al. 2008).

NON-CHARACTERISTIC SOLUTION (PARTIAL x -SOLUTION)

Again, we construct a homotopy into Equation (16) as 

 wxx – (y0)xx + p [(y0)xx – wt – w] = 0,  (27)

and choose the initial approximations are 

  (28)

Substituting (6) and (28) into (27) and collecting terms of 
the same powers of p, we have 

 (u1)xx + (y0)xx – (u0)t – u0 = 0,  u1(0, t) = 0, 
 (u1)x (0, t) = 0,  (29)
 
 (u2)xx – (u1)t – u1 = 0,  u2(0,t) = 0,  (u2)x (0,t) = 0,  (30)
 
 (u3)xx – (u2)t – u2 = 0,  u3(0,t) = 0,  (u3)x (0,t) = 0,  (31)
 
 (u4)xx – (u3)t – u3 = 0,  u4(0,t) = 0,  (u4)x (0,t) = 0,  (32)

etc. Solving the differential equations (29)-(32) we 
obtain, 
 
 
 

      
etc.
Hence, the non-characteristic (partial x -solution) series 
solution is 

      (33)

and this will, in the limit of infinitely many terms, yield 
the closed-form solution, 

 w(x,t) =  xe–t  + e–x,  (34)

FIGURE 1. The numerical results for w(x, t) for Example 1: (a) 10-term HPM partial t -solution, (b) 10-term HPM  
partial x -solution, (c) exact and (d) error between exact and 10-term HPM partial x -solution
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which is the same as the solutions obtained by ADM (Lesnic 
2007) and HAM for  (Sami Bataineh et al. 2008).
 From Table 1, it is observed that the 10-term HPM 
solutions agree with exact solutions for , while the 5-term 
HPM solutions are only valid for –2 < x < 2. It is evident that 
the efficiency of this approach can be dramatically enhanced 
by computing further terms or further components of w(x,t) 
when the HPM is used.

Example 2. Case: q = q(t) 

Considering  A = 1 and q = 2t, Equation (1) recasts as 

     (35)

subject to the initial and boundary conditions 

  (36)
 
      (37)

CHARACTERISTIC SOLUTION (PARTIAL t-SOLUTION)

According to HPM, the homotopy equation is 

 wt – (y0)t + p[(y0)t – wxx –2tw] =0. (38)

and take the initial approximations as 

 y0(x,t) = u0 (x,t) = w(x, 0) = g(x) = ex. (39)

Substituting (6) and (39) into (38), gives 

 (u1)t + (y0)t – (u0)xx – 2tu0 = 0,  u1(x, 0) = 0,          (40) 

 (u2)t – (u1)xx – 2tu1 = 0,  u2(x, 0) = 0,  (41)
 
 (u3)t – (u2)xx – 2tu2 = 0,  u3(x, 0) = 0,  (42)

etc. Solving the differential equation (40)-(42) , we 
obtain 

 
etc.
 Hence, the characteristic (partial t -solution) series 
solution is 

              (43)

and this will, in the limit of infinitely many terms, yield 
the closed-form solution, 

 w(x,t) = ex + t + t2 ,  (44)

x Exact – HPM 5 Exact – HPM 10
-10 1.194E+04 76.09
-9 3343 8.556
-8 844.7 0.754
-7 185.9 0.04869
-6 33.86 0.00209
-5 4.724 5.120E-05
-4 0.444 5.400E-07
-3 0.02214 1.000E-08
-2 0.0003436 0
-1 3.010E-07 2.000E-09
0 0 0
1 2.524E-07 0
2 0.0002383 1.000E-10
3 0.01273 1.000E-09
4 0.2106 3.790E-07
5 1.834 3.160E-05
6 10.66 0.001166
7 46.91 0.02453
8 168.5 0.3419
9 518.6 3.483
10 1413 27.71

TABLE 1.  Absolute errors between the exact and 5-term HPM and 10-term HPM solutions for Ex-1 for t = 1



  499

which is the same as the solutions obtained by ADM (Lesnic 
2007) and HAM for  (Sami Bataineh et al. 2008).

 NON-CHARACTERISTIC SOLUTION (PARTIAL x-SOLUTION)

Again, we construct a homotopy in Equation (35) as 
follows: 

 wxx – (y0)xx + p[(y0)xx – wt = 2tw] = 0,   (45)

and take the initial approximations as 

   
     (46)

 Substituting (6) and (46) into (45), gives 

          
    (47)
 
  
   (48)
 
  
     (49)

etc. Solving the equations (47)-(49) we obtain, 

   
 

 

etc.
 Finally, the non-characteristic (partial x-solution) 
series solution is 

 

and this will, in the limit of infinitely many terms, yield 
the closed-form solution,
 
 w(x,t) = ex + t + t2  (51)

which is the same as the solutions obtained by ADM (Lesnic 
2007) and HAM for  (Sami Bataineh et al. 2008).
 From Table 2, it is observed that the 10-term HPM 
solutions agree with exact solutions for – 6 < x < 6, while 
the 5-term HPM solutions are only valid for – 2 < x < 2.
  
Example 3. Case: q = q(x)

Taking A =1 and q = –(1 + 4 x2), Equation (1) reduces to
 
  
    

(52)

subject to the initial and boundary conditions 
  
 w(x, 0) = ex2 = g(x),  x ∈ ℜ,   (53)
  
    (54)

CHARACTERISTIC SOLUTION (PARTIAL t-SOLUTION)

We construct a homotopy in Equation (52) which satisfies 
the following relation: 

             (55)

 Let us choose the initial approximations as 

  (56)

 Substituting (6) and (56) into (55) and collecting terms 
of the same powers of p, we have 

FIGURE 2. The numerical results for w(w, t) for Example 2: (a) 10-term HPM partial t -solution, (b) 10-term HPM  
partial  x-solution, (c) exact and (d) error between exact and 10-term HPM partial x -solution
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  (57)
 
           (58) 
 
           (59)

etc. Solving the above equations (57)-(59), we obtain 

 

etc.
 Finally, the characteristic (partial t -solution) series 
solution is 

  (60)

and this will, in the limit of infinitely many terms, yield 
the closed-form solution, 

 w(x, t) = ex2 + t, (61)

which is the same as the solutions obtained by ADM (Lesnic 
2007) and HAM for  (Sami Bataineh et al. 2008).

NON-CHARACTERISTIC SOLUTION (PARTIAL x -SOLUTION)

Now we construct a homotopy in Equation (52) which 
satisfies the following relation: 

          (62)

where p ∈ [0, 1] is an embedding parameter and y0 is 
an initial approximation which satisfies the boundary 
conditions. Let us choose the initial approximations as 

  (63)

where uj(j = 1,2,3,...) are functions yet to be determined. 
Substituting (6) and (63) into (62) and collecting terms of 
the same powers of p, we have 

  
(64)

  
             (65) 
 
 
 
     (66)

etc. Solving the differential equation (64)-(66) we 
obtain, 

 

 

x Exact – HPM 5 Exact – HPM 10
-10 1.044E+ 04 204.7
-9 3832 25.74
-8 1245 2.526
-7 346.6 0.1812
-6 78.76 0.008617
-5 13.55 0.0002335
-4 1.556 2.803E-06
-3 0.09409 8.900E-09
-2 0.001761 0
-1 1.864E-06 1.000E-09
0 0 0
1 2.220E-06 1.000E-08
2 0.002539 0
3 0.1636 1.000E-07
4 3.281 4.000E-06
5 34.9 0.000378
6 250.2 0.01544
7 1374 0.3598
8 6242 5.571
9 2.470E+04 63.22
10 8.822E+04 562.2

TABLE 2. Absolute errors between the exact and 5-term HPM and 10-term HPM solutions for Ex-2 for t = 1 
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etc.
 Finally, the approximate non-characteristic solution 
(partial x-solution) in a series form is 

  (67)

and this will, in the limit of infinitely many terms, yield 
the closed-form solution, 

 w(x, t) = et+x2,  (68)

which is the same as the solutions obtained by ADM (Lesnic 
2007) and HAM for  (Sami Bataineh et al. 2008).
 From Table 3, it is observed that the 20-term HPM 
solutions agree with exact solutions for – 6 < t < 6, , while 
the 10-term HPM solutions are only valid for – 2 < t < 2 .

Example 4. Case: q = q(x, t) 

Taking A = 1 and q = –(4x2 – 2t +2), Equation (1) reduce 
to
 
      (69) 

subject to the initial and boundary conditions
 
   (70)
 
  (71) 

CHARACTERISTIC SOLUTION (PARTIAL t-SOLUTION)

We construct a homotopy in Equation (69) which satisfies 
the following relation: 

     (72) 

and take the initial approximations as 

  (73)

Substituting (6) and (73) into (72), gives 

               
      (74)
 
    (75) 
 
    (76) 

etc. Solving the differential equation (74)-(76), we 
obtain 

 
etc.
 Hence, the characteristic (partial t -solution) series 
solution is 

  (77)

and this will, in the limit of infinitely many terms, yield 
the closed-form solution, 

 w(x, t) = ex2 + t2, (78)

which is the same as the solutions obtained by ADM (Lesnic 
2007) and HAM for   (Sami Bataineh et al. 2008).

FIGURE 3.  The numerical results for w(x, t) for Example 3: (a) 10-term HPM partial t -solution, (b) 6-term HPM  
partial x -solution, (c) exact and (d) error between exact and 6-term HPM partial x -solution 
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NON-CHARACTERISTIC SOLUTION (PARTIAL x -SOLUTION)

Again construct a homotopy in Equation (69) which 
satisfies the following relation: 

   (79)

where p ∈ [0, 1]  is an embedding parameter and y0 is 
an initial approximation which satisfies the boundary 
conditions. Let us choose the initial approximations as 

              (80) 

Substituting (6) and (80) into (79), gives 

  
(81)

 

  
(82)

 

 
    (83)

etc. 
 Solving the equation (81)-(83) we obtain, 

 

 

etc.
 Hence, the non-characteristic (partial x -solution) 
series solution is 

  (84)

and this will, in the limit of infinitely many terms, yield 
the closed-form solution, 
  
 w(x, t) = et2 + x2,  (85)

which is the same as the solutions obtained by ADM (Lesnic 
2007) and HAM for  (Sami Bataineh et al. 2008).
 From Table 4, it is observed that the 10-term HPM 
solutions agree with exact solutions for  – 2 < x < 2, while 
the 5-term HPM solutions are only valid for  – 1 < x < 1.

t Exact – HPM 10 Exact – HPM 20

-10 3650     36.42   
-9 1202     4.116   
-8 346.3    0.3587   
-7 84.08   0.02249   
-6 16.32  0.0009152   
-5 2.33 2.066E-05   
-4 0.2131 1.972E-07   
-3 0.00962 6.000E-10   
-2 0.0001193 1.000E-10   
-1 6.300E-08 1.000E-10   
0 0 0
1 7.100E-08 3.000E-09   
2 0.0001669 0
3 0.01596 4.000E-08   
4 0.4215 3.000E-07   
5 5.525 3.270E-05   
6 46.74 0.001595   
7 293.7 0.04321   
8 1492 0.7614   
9 6476 9.675   
10 2.497E+04 95

Table 3. absolute errors between the exact and 10-term HPM and 20-term HPM solutions for ex-3  for x = 1
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FIGURE 4.  The numerical results for w(x t ) for Example 4: (a) 10-term HPM partial t-solution, (b) 6-term HPM  
partial x-solution, (c) exact and (d) error between exact and 6-term HPM partial x-solution

x Exact – HPM 5 Exact – HPM 10
-10 7.307E+43 7.307E+43 
-9 4.094E+35 4.094E+35 
-8 1.695E+28 1.695E+28 
-7 5.185E+21 5.185E+21 
-6 1.172E+16 1.171E+16 
-5 1.957E+11 1.777E+11 
-4 2.362E+07 6.224E+06 
-3 1.199E+04 53.44 
-2 3.171 7.600E-06 
-1 8.312E-06 3.000E-09 
0 0 0
1 8.312E-06 3.000E-09 
2 3.171 7.600E-06 
3 1.199E+04 53.44 
4 2.362E+07 6.224E+06 
5 1.957E+11 1.777E+11 
6 1.172E+16 1.171E+16 
7 5.185E+21 5.185E+21 
8 1.695E+28 1.695E+28 
9 4.094E+35 4.094E+35 
10 7.307E+43 7.307E+43 

TABLE 4. Absolute errors between the exact and 5-term HPM and 10-term HPM solutions for Ex-4 for t = 1
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CONCLUSION

In this paper, the standard homotopy-perturbation method 
(HPM) was applied to solve Cauchy reaction-diffusion 
problems. In all examples, in the limit of infinitely many 
terms the HPM yields the exact solution. The results of the 
test examples also show that the ADM and HAM results are 
same as the results of HPM. Comparisons with the exact 
solution reveals that HPM is simple, efficient and reliable. 
In addition, the calculations involved in HPM are very 
simple and straightforward. It is demonstrated that HPM is 
a powerful and efficient tool for PDEs.
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